Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
J Neurosci ; 43(43): 7101-7118, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37709538

RESUMO

Somatostatin (SST) interneurons produce delayed inhibition because of the short-term facilitation of their excitatory inputs created by the expression of metabotropic glutamate receptor 7 (mGluR7) and presynaptic GluK2-containing kainate receptors (GluK2-KARs). Using mice of both sexes, we find that as synaptic facilitation at layer (L)2/3 SST cell inputs increases during the first few postnatal weeks, so does GluK2-KAR expression. Removal of sensory input by whisker trimming does not affect mGluR7 but prevents the emergence of presynaptic GluK2-KARs, which can be restored by allowing whisker regrowth or by acute calmodulin activation. Conversely, late trimming or acute inhibition of Ca2+/calmodulin-dependent protein kinase II is sufficient to reduce GluK2-KAR activity. This developmental and activity-dependent regulation also produces a specific reduction of L4 GluK2-KARs that advances in parallel with the maturation of sensory processing in L2/3. Finally, we find that removal of both GluK2-KARs and mGluR7 from the synapse eliminates short-term facilitation and reduces sensory adaptation to repetitive stimuli, first in L4 of somatosensory cortex, then later in development in L2/3. The dynamic regulation of presynaptic GluK2-KARs potentially allows for flexible scaling of late inhibition and sensory adaptation.SIGNIFICANCE STATEMENT Excitatory synapses onto somatostatin (SST) interneurons express presynaptic, calcium-permeable kainate receptors containing the GluK2 subunit (GluK2-KARs), activated by high-frequency activity. In this study we find that their presence on L2/3 SST synapses in the barrel cortex is not based on a hardwired genetic program but instead is regulated by sensory activity, in contrast to that of mGluR7. Thus, in addition to standard synaptic potentiation and depression mechanisms, excitatory synapses onto SST neurons undergo an activity-dependent presynaptic modulation that uses GluK2-KARs. Further, we present evidence that loss of the frequency-dependent synaptic components (both GluK2-KARs and mGluR7 via Elfn1 deletion) contributes to a decrease in the sensory adaptation commonly seen on repetitive stimulus presentation.


Assuntos
Ácido Caínico , Receptores de Ácido Caínico , Masculino , Feminino , Camundongos , Animais , Receptores de Ácido Caínico/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo
2.
Neuropharmacology ; 234: 109570, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146939

RESUMO

Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDA receptor-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDA receptor full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Assuntos
Receptores de N-Metil-D-Aspartato , Receptores Pré-Sinápticos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Pré-Sinápticos/metabolismo , Neurônios/metabolismo , Transdução de Sinais
3.
J Biol Chem ; 299(2): 102900, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640864

RESUMO

Extracellular dopamine (DA) levels are constrained by the presynaptic DA transporter (DAT), a major psychostimulant target. Despite its necessity for DA neurotransmission, DAT regulation in situ is poorly understood, and it is unknown whether regulated DAT trafficking impacts dopaminergic signaling and/or behaviors. Leveraging chemogenetics and conditional gene silencing, we found that activating presynaptic Gq-coupled receptors, either hM3Dq or mGlu5, drove rapid biphasic DAT membrane trafficking in ex vivo striatal slices, with region-specific differences between ventral and dorsal striata. DAT insertion required D2 DA autoreceptors and intact retromer, whereas DAT retrieval required PKC activation and Rit2. Ex vivo voltammetric studies revealed that DAT trafficking impacts DA clearance. Furthermore, dopaminergic mGlu5 silencing elevated DAT surface expression and abolished motor learning, which was rescued by inhibiting DAT with a subthreshold CE-158 dose. We discovered that presynaptic DAT trafficking is complex, multimodal, and region specific, and for the first time, we identified cell autonomous mechanisms that govern presynaptic DAT tone. Importantly, the findings are consistent with a role for regulated DAT trafficking in DA clearance and motor function.


Assuntos
Corpo Estriado , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Receptores Pré-Sinápticos/metabolismo , Animais , Camundongos , Corpo Estriado/citologia , Corpo Estriado/fisiologia
4.
J Neurosci ; 42(48): 8918-8935, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36257688

RESUMO

α2δ-1 (encoded by the Cacna2d1 gene) is a newly discovered NMDA receptor-interacting protein and is the therapeutic target of gabapentinoids (e.g., gabapentin and pregabalin) frequently used for treating patients with neuropathic pain. Nerve injury causes sustained α2δ-1 upregulation in the dorsal root ganglion (DRG), which promotes NMDA receptor synaptic trafficking and activation in the spinal dorsal horn, a hallmark of chronic neuropathic pain. However, little is known about how nerve injury initiates and maintains the high expression level of α2δ-1 to sustain chronic pain. Here, we show that nerve injury caused histone hyperacetylation and diminished enrichment of histone deacetylase-2 (HDAC2), but not HDAC3, at the Cacna2d1 promoter in the DRG. Strikingly, Hdac2 knockdown or conditional knockout in DRG neurons in male and female mice consistently induced long-lasting mechanical pain hypersensitivity, which was readily reversed by blocking NMDA receptors, inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-NMDA receptor interaction at the spinal cord level. Hdac2 deletion in DRG neurons increased histone acetylation levels at the Cacna2d1 promoter, upregulated α2δ-1 in the DRG, and potentiated α2δ-1-dependent NMDA receptor activity at primary afferent central terminals in the spinal dorsal horn. Correspondingly, Hdac2 knockdown-induced pain hypersensitivity was blunted in Cacna2d1 knockout mice. Thus, our findings reveal that HDAC2 functions as a pivotal transcriptional repressor of neuropathic pain via constitutively suppressing α2δ-1 expression and ensuing presynaptic NMDA receptor activity in the spinal cord. HDAC2 enrichment levels at the Cacna2d1 promoter in DRG neurons constitute a unique epigenetic mechanism that governs acute-to-chronic pain transition.SIGNIFICANCE STATEMENT Excess α2δ-1 proteins produced after nerve injury directly interact with glutamate NMDA receptors to potentiate synaptic NMDA receptor activity in the spinal cord, a prominent mechanism of nerve pain. Because α2δ-1 upregulation after nerve injury is long lasting, gabapentinoids relieve pain symptoms only temporarily. Our study demonstrates for the first time the unexpected role of intrinsic HDAC2 activity at the α2δ-1 gene promoter in limiting α2δ-1 gene transcription, NMDA receptor-dependent synaptic plasticity, and chronic pain development after nerve injury. These findings challenge the prevailing view about the role of general HDAC activity in promoting chronic pain. Restoring the repressive HDAC2 function and/or reducing histone acetylation at the α2δ-1 gene promoter in primary sensory neurons could lead to long-lasting relief of nerve pain.


Assuntos
Dor Aguda , Dor Crônica , Neuralgia , Masculino , Feminino , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Dor Crônica/genética , Dor Crônica/metabolismo , Gabapentina/uso terapêutico , Histonas/metabolismo , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Receptores Pré-Sinápticos/metabolismo , Camundongos Knockout , Dor Aguda/metabolismo , Células Receptoras Sensoriais/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo
5.
Synapse ; 76(11-12): e22246, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831708

RESUMO

Striatal medium-sized spiny neurons express mRNA and protein of GPR55 receptors that stimulate neurotransmitter release; thus, GPR55 could be sent to nigral striatal projections, where it might modulate GABA release and motor behavior. Here, we study the presence of GPR55 receptors at striato-nigral terminals, their modulation of GABA release, their signaling pathway, and their effect on motor activity. By double immunohistochemistry, we found the colocation of GPR55 protein and substance P in the dorsal striatum. In slices of the rat substantia nigra, the GPR55 agonists LPI and O-1602 stimulated [3 H]-GABA release induced by high K+ depolarization in a dose-dependent manner. The antagonists CID16020046 and cannabidiol prevented agonist stimulation in a dose-dependent way. The effect of GPR55 on nigral [3 H]-GABA release was prevented by lesion of the striatum with kainic acid, which was accompanied by a decrement of GPR55 protein in nigral synaptosomes, indicating the presynaptic location of receptors. The depletion of internal Ca2+ stores with thapsigargin did not prevent the effect of LPI on [3 H]-GABA release, but the remotion or chelation of external calcium did. Blockade of Gi, Gs, PLC, PKC, or dopamine D1 receptor signaling proteins did not prevent the effect of GPR55 on release. However, the activation of GPR55 stimulated [3 H]-cAMP accumulation and PKA activity. Intranigral unilateral injection of LPI induces contralateral turning. This turning was prevented by CID16020046, cannabidiol, and bicuculline but not by SCH 23390. Our data indicate that presynaptic GPR55 receptors stimulate [3 H]-GABA release at striato-nigral terminals through [3 H]-cAMP production and stimulate motor behavior.


Assuntos
Canabidiol , Receptores de Canabinoides , Receptores Acoplados a Proteínas G , Receptores Pré-Sinápticos , Animais , Compostos Azabicíclicos , Benzoatos , Bicuculina/farmacologia , Cálcio/metabolismo , Canabidiol/metabolismo , Canabidiol/farmacologia , Ácido Caínico/metabolismo , Ácido Caínico/farmacologia , Neurotransmissores/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptores de Canabinoides/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Pré-Sinápticos/metabolismo , Substância P/metabolismo , Substância Negra/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacologia , Ácido gama-Aminobutírico/metabolismo
6.
Nat Rev Neurosci ; 23(1): 4-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782781

RESUMO

Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.


Assuntos
Metabolismo Energético/fisiologia , Receptores Pré-Sinápticos/metabolismo , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Glicólise , Humanos , Vesículas Sinápticas
7.
J Neurochem ; 160(3): 412-425, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855215

RESUMO

Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas do Tecido Nervoso/genética , Sinapses/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Demência Frontotemporal/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptores Pré-Sinápticos/metabolismo
8.
Acta Neuropathol Commun ; 9(1): 180, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749824

RESUMO

Pathologic inclusions composed of α-synuclein called Lewy pathology are hallmarks of Parkinson's Disease (PD). Dominant inherited mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. Lewy pathology is found in the majority of individuals with LRRK2-PD, particularly those with the G2019S-LRRK2 mutation. Lewy pathology in LRRK2-PD associates with increased non-motor symptoms such as cognitive deficits, anxiety, and orthostatic hypotension. Thus, understanding the relationship between LRRK2 and α-synuclein could be important for determining the mechanisms of non-motor symptoms. In PD models, expression of mutant LRRK2 reduces membrane localization of α-synuclein, and enhances formation of pathologic α-synuclein, particularly when synaptic activity is increased. α-Synuclein and LRRK2 both localize to the presynaptic terminal. LRRK2 plays a role in membrane traffic, including axonal transport, and therefore may influence α-synuclein synaptic localization. This study shows that LRRK2 kinase activity influences α-synuclein targeting to the presynaptic terminal. We used the selective LRRK2 kinase inhibitors, MLi-2 and PF-06685360 (PF-360) to determine the impact of reduced LRRK2 kinase activity on presynaptic localization of α-synuclein. Expansion microscopy (ExM) in primary hippocampal cultures and the mouse striatum, in vivo, was used to more precisely resolve the presynaptic localization of α-synuclein. Live imaging of axonal transport of α-synuclein-GFP was used to investigate the impact of LRRK2 kinase inhibition on α-synuclein axonal transport towards the presynaptic terminal. Reduced LRRK2 kinase activity increases α-synuclein overlap with presynaptic markers in primary neurons, and increases anterograde axonal transport of α-synuclein-GFP. In vivo, LRRK2 inhibition increases α-synuclein overlap with glutamatergic, cortico-striatal terminals, and dopaminergic nigral-striatal presynaptic terminals. The findings suggest that LRRK2 kinase activity plays a role in axonal transport, and presynaptic targeting of α-synuclein. These data provide potential mechanisms by which LRRK2-mediated perturbations of α-synuclein localization could cause pathology in both LRRK2-PD, and idiopathic PD.


Assuntos
Transporte Axonal/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Receptores Pré-Sinápticos/metabolismo , alfa-Sinucleína/metabolismo , Animais , Inibidores Enzimáticos , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Gravidez , Cultura Primária de Células , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
9.
FASEB J ; 35(11): e21855, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644430

RESUMO

Glutamate is the most pivotal excitatory neurotransmitter in the central nervous system. Metabotropic glutamate receptors (mGluRs) dimerize and can couple to inhibitory intracellular signal cascades, thereby protecting glutamatergic neurons from excessive excitation and cell death. MGluR7 is correlated with age-related hearing deficits and noise-induced hearing loss; however its exact localization in the cochlea is unknown. Here, we analyzed the expression and localization of mGluR7a and mGluR7b in mouse cochlear wholemounts in detail, using confocal microscopy and 3D reconstructions. We observed a presynaptic localization of mGluR7a at inner hair cells (IHCs), close to the synaptic ribbon. To detect mGluR7b, newly generated antibodies were characterized and showed co-localization with mGluR7a at IHC ribbon synapses. Compared to the number of synaptic ribbons, the numbers of mGluR7a and mGluR7b puncta were reduced at higher frequencies (48 to 64 kHz) and in older animals (6 and 12 months). Previously, we reported a presynaptic localization of mGluR4 and mGluR8b at this synapse type. This enables the possibility for the formation of homo- and/or heterodimeric receptors composed of mGluR4, mGluR7a, mGluR7b and mGluR8b at IHC ribbon synapses. These receptor complexes might represent new molecular targets suited for pharmacological concepts to protect the cochlea against noxious stimuli and excitotoxicity.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/metabolismo , Animais , Anticorpos/imunologia , Ácido Glutâmico/metabolismo , Células HEK293 , Perda Auditiva Provocada por Ruído/metabolismo , Humanos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Receptores de Glutamato Metabotrópico/imunologia , Transfecção
10.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571906

RESUMO

AMPA receptors (AMPARs) are ionotropic glutamate receptors that play a major role in excitatory neurotransmission. AMPARs are located at both presynaptic and postsynaptic plasma membranes. A huge number of studies investigated the role of postsynaptic AMPARs in the normal and abnormal functioning of the mammalian central nervous system (CNS). These studies highlighted that changes in the functional properties or abundance of postsynaptic AMPARs are major mechanisms underlying synaptic plasticity phenomena, providing molecular explanations for the processes of learning and memory. Conversely, the role of AMPARs at presynaptic terminals is as yet poorly clarified. Accruing evidence demonstrates that presynaptic AMPARs can modulate the release of various neurotransmitters. Recent studies also suggest that presynaptic AMPARs may possess double ionotropic-metabotropic features and that they are involved in the local regulation of actin dynamics in both dendritic and axonal compartments. In addition, evidence suggests a key role of presynaptic AMPARs in axonal pathology, in regulation of pain transmission and in the physiology of the auditory system. Thus, it appears that presynaptic AMPARs play an important modulatory role in nerve terminal activity, making them attractive as novel pharmacological targets for a variety of pathological conditions.


Assuntos
Neurônios/fisiologia , Dor/fisiopatologia , Receptores de AMPA/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Animais , Humanos
11.
Neuropharmacology ; 196: 108705, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246684

RESUMO

Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not known how blockade of GABAB receptors in the region affects anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to hyperactivity of LHb neurons and decreased the level of extracellular dopamine (DA) in the basolateral amygdala (BLA) compared to sham-lesioned rats. Intra-LHb injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both groups. Further, intra-LHb injection of CGP36216 decreased the firing rate of the neurons, and increased the GABA/glutamate ratio in the LHb and release of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 increased the firing rate of the neurons and decreased the GABA/glutamate ratio and release of DA and 5-HT in sham-lesioned and the lesioned rats. However, the doses of the antagonists producing these behavioral effects in the lesioned rats were lower than those in sham-lesioned rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in the lesioned rats. Collectively, these findings suggest that pre-synaptic and post-synaptic GABAB receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway up-regulates function and/or expression of these receptors.


Assuntos
Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Habenula/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de GABA-B/metabolismo , Receptores Pré-Sinápticos/metabolismo , Animais , Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Habenula/efeitos dos fármacos , Habenula/fisiopatologia , Compostos Organofosforados/farmacologia , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/psicologia , Parte Compacta da Substância Negra , Ácidos Fosfínicos/farmacologia , Ratos , Receptores Pré-Sinápticos/antagonistas & inibidores , Serotonina/metabolismo , Regulação para Cima
12.
Neurobiol Dis ; 156: 105402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044147

RESUMO

Mutations in the beta-amyloid protein (APP) cause familial Alzheimer's disease. In hAPP-J20 mice expressing mutant APP, pharmacological inhibition or genetic ablation of the tyrosine phosphatase PTP1B prevents CA3 hippocampus neuron loss and cognitive decline. However, how targeting PTP1B affects the cellular mechanisms underlying these cognitive deficits remains unknown. Changes in synaptic strength at the hippocampus can affect information processing for learning and memory. While prior studies have focused on post-synaptic mechanisms to account for synaptic deficits in Alzheimer's disease models, presynaptic mechanisms may also be affected. Here, using whole cell patch-clamp recording, coefficient of variation (CV) analysis suggested a profound presynaptic deficit in long-term potentiation (LTP) of CA3:CA1 synapses in hAPP-J20 mice. While the membrane-impermeable ionotropic NMDA receptor (NMDAR) blocker norketamine in the post-synaptic recording electrode had no effect on LTP, additional bath application of the ionotropic NMDAR blockers MK801 could replicate the deficit in LTP in wild type mice. In contrast to LTP, the paired-pulse ratio and short-term facilitation (STF) were aberrantly increased in hAPP-J20 mice. These synaptic deficits in hAPP-J20 mice were associated with reduced phosphorylation of NMDAR GluN2B and the synaptic vesicle recycling protein NSF (N-ethylmaleimide sensitive factor). Phosphorylation of both proteins, together with synaptic plasticity and cognitive function, were restored by PTP1B ablation or inhibition by the PTP1B-selective inhibitor Trodusquemine. Taken together, our results indicate that PTP1B impairs presynaptic NMDAR-mediated synaptic plasticity required for spatial learning in a mouse model of Alzheimer's disease. Since Trodusquemine has undergone phase 1/2 clinical trials to treat obesity, it could be repurposed to treat Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Plasticidade Neuronal/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Pré-Sinápticos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Colestanos/farmacologia , Colestanos/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores Pré-Sinápticos/genética , Espermina/análogos & derivados , Espermina/farmacologia , Espermina/uso terapêutico
13.
Nat Metab ; 2(10): 1077-1095, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33020662

RESUMO

Mitochondria supply ATP essential for synaptic transmission. Neurons face exceptional challenges in maintaining energy homoeostasis at synapses. Regulation of mitochondrial trafficking and anchoring is critical for neurons to meet increased energy consumption during sustained synaptic activity. However, mechanisms recruiting and retaining presynaptic mitochondria in sensing synaptic ATP levels remain elusive. Here we reveal an energy signalling axis that controls presynaptic mitochondrial maintenance. Activity-induced presynaptic energy deficits can be rescued by recruiting mitochondria through the AMP-activated protein kinase (AMPK)-p21-activated kinase (PAK) energy signalling pathway. Synaptic activity induces AMPK activation within axonal compartments and AMPK-PAK signalling triggers phosphorylation of myosin VI, which drives mitochondrial recruitment and syntaphilin-mediated anchoring on presynaptic filamentous actin. This pathway maintains presynaptic energy supply and calcium clearance during intensive synaptic activity. Disrupting this signalling cross-talk triggers local energy deficits and intracellular calcium build-up, leading to impaired synaptic efficacy during trains of stimulation and reduced recovery from synaptic depression after prolonged synaptic activity. Our study reveals a mechanistic cross-talk between energy sensing and mitochondria anchoring to maintain presynaptic metabolism, thus fine-tuning short-term synaptic plasticity and prolonged synaptic efficacy.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Receptor Cross-Talk/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Potencial da Membrana Mitocondrial , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo , Proteínas do Tecido Nervoso/genética , Fosforilação , Cultura Primária de Células , Receptores Pré-Sinápticos/metabolismo , Quinases Ativadas por p21/metabolismo
14.
J Neuroendocrinol ; 32(11): e12881, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803906

RESUMO

The secretion of prolactin from the pituitary is negatively controlled by tuberoinfundibular dopamine (TIDA) neurones. The electrical properties of TIDA cells have recently been identified as a modulatory target of neurotransmitters and hormones in the lactotrophic axis. The role of the GABAB receptor in this control has received little attention, yet is of particular interest because it may act as a TIDA neurone autoreceptor. Here, this issue was explored in a spontaneously active rat TIDA in vitro slice preparation using whole-cell recordings. Application of the GABAB receptor agonist, baclofen, dose-dependently slowed down or abolished the network oscillations typical of this preparation. Pharmacological manipulations identify the underlying mechanism as an outward current mediated by G-protein-coupled inwardly rectifying K+ -like channels. In addition to this postsynaptic modulation, we describe a presynaptic modulation where GABAB receptors restrain the release of glutamate and GABA onto TIDA neurones. Our data identify both pre- and postsynaptic modulation of TIDA neurones by GABAB receptors that may play a role in the neuronal network control of pituitary prolactin secretion and lactation.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Células Neuroendócrinas/metabolismo , Receptores de GABA-B/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinapses/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Baclofeno/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Agonistas GABAérgicos/farmacologia , Masculino , Células Neuroendócrinas/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/efeitos dos fármacos , Receptores Pré-Sinápticos/efeitos dos fármacos , Sinapses/efeitos dos fármacos
15.
Neurosci Lett ; 736: 135257, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32682848

RESUMO

Somatosensory information can be modulated at the spinal cord level by primary afferent depolarization (PAD), known to produce presynaptic inhibition (PSI) by decreasing neurotransmitter release through the activation of presynaptic ionotropic receptors. Descending monoaminergic systems also modulate somatosensory processing. We investigated the role of D1-like and D2-like receptors on pathways mediating PAD in the hemisected spinal cord of neonatal mice. We recorded low-threshold evoked dorsal root potentials (DRPs) and population monosynaptic responses as extracellular field potentials (EFPs). We used a paired-pulse conditioning-test protocol to assess homosynaptic and heterosynaptic depression of evoked EFPs to discriminate between dopaminergic effects on afferent synaptic efficacy and/or on pathways mediating PAD, respectively. DA (10 µM) depressed low-threshold evoked DRPs by 43 %, with no effect on EFPs. These depressant effects on DRPs were mimicked by the D2-like receptor agonist quinpirole (35 %). Moreover, by using selective antagonists at D2-like receptors (encompassing the D2, D3, and D4 subtypes), we found that the D2 and D3 receptor subtypes participate in the quinpirole depressant inhibitory effects of pathways mediating PAD.


Assuntos
Inibição Neural/fisiologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Medula Espinal/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Camundongos , Vias Neurais/metabolismo , Neurônios Aferentes/metabolismo , Receptores Pré-Sinápticos/metabolismo
16.
J Headache Pain ; 21(1): 83, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615921

RESUMO

BACKGROUND: Purine receptors play roles in peripheral and central sensitization and are associated with migraine headache. We investigated the possibility that ATP plays a permissive role in the activation of AMPA receptors thus inducing Glu release from nerve terminals isolated from the rat trigeminal caudal nucleus (TCN). METHODS: Nerve endings isolated from the rat TCN were loaded with [3H]D-aspartic acid ([3H]D-ASP), layered into thermostated superfusion chambers, and perfused continuously with physiological medium, alone or with various test drugs. Radioactivity was measured to assess [3H]D-ASP release under different experimental conditions. RESULTS: Synaptosomal [3H]D-ASP spontaneous release was stimulated by ATP and to an even greater extent by the ATP analogue benzoylbenzoylATP (BzATP). The stimulation of [3H]D-ASP basal release by the purinergic agonists was prevented by the selective P2X7 receptor antagonist A438079. AMPA had no effect on basal [3H]D-ASP release, but the release observed when synaptosomes were exposed to AMPA plus a purinoceptor agonist exceeded that observed with ATP or BzATP alone. The selective AMPA receptor antagonist NBQX blocked this "excess" release. Co-exposure to AMPA and BzATP, each at a concentration with no release-stimulating effects, evoked a significant increase in [3H]D-ASP basal release, which was prevented by exposure to a selective AMPA antagonist. CONCLUSIONS: P2X7 receptors expressed on glutamatergic nerve terminals in the rat TCN can mediate Glu release directly and indirectly by facilitating the activation of presynaptic AMPA receptors. The high level of glial ATP that occurs during chronic pain states can promote widespread release of Glu as well as can increase the function of AMPA receptors. In this manner, ATP contributes to the AMPA receptor activation involved in the onset and maintenance of the central sensitization associated with chronic pain.


Assuntos
Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/metabolismo , Receptores de AMPA/metabolismo , Receptores Pré-Sinápticos/metabolismo , Receptores Purinérgicos P2X7/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Agonistas do Receptor Purinérgico P2X , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Transmissão Sináptica , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
17.
Prog Neurobiol ; 194: 101801, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32428558

RESUMO

Synaptic loss is the best correlate of cognitive deficits in Alzheimer's disease (AD). Extensive experimental evidence also indicates alterations of synaptic properties at the early stages of disease progression, before synapse loss and neuronal degeneration. A majority of studies in mouse models of AD have focused on post-synaptic mechanisms, including impairment of long-term plasticity, spine structure and glutamate receptor-mediated transmission. Here we review the literature indicating that the synaptic pathology in AD includes a strong presynaptic component. We describe the evidence indicating presynaptic physiological functions of the major molecular players in AD. These include the amyloid precursor protein (APP) and the two presenilin (PS) paralogs PS1 or PS2, genetically linked to the early-onset form of AD, in addition to tau which accumulates in a pathological form in the AD brain. Three main mechanisms participating in presynaptic functions are highlighted. APP fragments bind to presynaptic receptors (e.g. nAChRs and GABAB receptors), presenilins control Ca2+ homeostasis and Ca2+-sensors, and tau regulates the localization of presynaptic molecules and synaptic vesicles. We then discuss how impairment of these presynaptic physiological functions can explain or forecast the hallmarks of synaptic impairment and associated dysfunction of neuronal circuits in AD. Beyond the physiological roles of the AD-related proteins, studies in AD brains also support preferential presynaptic alteration. This review features presynaptic failure as a strong component of pathological mechanisms in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Presenilinas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Pré-Sinápticos/metabolismo , Transmissão Sináptica/fisiologia , Proteínas tau/metabolismo , Animais , Humanos
18.
Pharmacol Biochem Behav ; 193: 172932, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315693

RESUMO

Several studies have reported that low doses of the 5-HT1A receptor agonist 8-OH-DPAT reduce cocaine-induced locomotor activity. However, it has also been reported that high doses of 8-OH-DPAT do not substitute for or alter the discriminative signal of cocaine (COC) or amphetamine (AMPH). This study aimed to evaluate the effects of low and high doses of the 5-HT1A agonist 8-OH-DPAT on the discriminative signal of AMPH using conditioned taste aversion as a drug discrimination procedure. Additionally, to establish a correlation between the behavioral effects in drug discrimination and changes in dopamine (DA) and gamma-aminobutyric acid (GABA) concentrations, we evaluated the effect of systemic administration of low or high doses of the 5-HT1A receptor agonist 8-OH-DPAT and of the 5-HT1A receptor antagonist WAY100135 on DA and GABA extracellular concentrations in the nucleus accumbens (nAcc) and ventral tegmental area (VTA), respectively, using cerebral microdialysis. The behavioral results showed that low but not high doses of 8-OH-DPAT produced a reduction in the AMPH-induced discriminative signal, while WAY100135 administration prevented such effects. The microdialysis results showed that a low dose of 8-OH-DPAT decreased extracellular DA concentrations in the nAcc and increased GABA concentrations in the VTA. Pretreatment with WAY100135 prevented these effects. These data support the hypothesis that 5-HT1A receptors modulate the behavioral effects of psychostimulant drugs, such as AMPH, through somatodendritic 5-HT1A autoreceptors in the raphe nucleus indicating that 5-HT1A receptors may be an important target for the development of pharmacological treatments for psychostimulant addiction.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/administração & dosagem , Anfetamina/administração & dosagem , Agentes Aversivos/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Paladar/efeitos dos fármacos , Animais , Dopamina/metabolismo , Espaço Extracelular/metabolismo , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina , Receptores Pré-Sinápticos/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Cells ; 9(2)2020 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991879

RESUMO

Astrocytes have critical functions throughout the central nervous system (CNS) and have emerged as regulators of synaptic development and function. With their highly complex morphologies, they are able to interact with thousands of synapses via peripheral astrocytic processes (PAPs), ensheathing neuronal axons and dendrites to form the tripartite synapse. In this way, astrocytes engage in crosstalk with neurons to mediate a variety of CNS processes including the regulation of extracellular matrix protein signaling, formation and maintenance of the blood-brain barrier (BBB), axon growth and guidance, homeostasis of the synaptic microenvironment, synaptogenesis, and the promotion of synaptic diversity. In this review, we discuss several key astrocyte signaling factors (thrombospondins, netrins, apolipoproteins, neuregulins, bone morphogenetic proteins, and neuroligins) in the maintenance and regulation of synapse formation. We also explore how these astrocyte signaling factors are impacted by and contribute to substance abuse, particularly alcohol and cocaine use.


Assuntos
Apolipoproteínas/metabolismo , Astrócitos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Netrinas/metabolismo , Neurregulinas/metabolismo , Sinapses/metabolismo , Trombospondinas/metabolismo , Transtornos Relacionados ao Uso de Álcool/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Humanos , Receptores Pré-Sinápticos/metabolismo , Transdução de Sinais/fisiologia
20.
Neuron ; 103(1): 102-117.e5, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31103358

RESUMO

Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation. Only when we mimicked the endogenous firing of GRP neurons and stimulated them repetitively to fire bursts of action potentials did GRPR neurons depolarize progressively and become excitable by GRP neurons. GRPR but not glutamate receptor antagonism prevented this action. Provoking itch-like behavior by optogenetic activation of spinal GRP neurons required similar stimulation paradigms. These results establish a spinal gating mechanism for itch that requires sustained repetitive activity of presynaptic GRP neurons and postsynaptic GRP signaling to drive GRPR neuron output.


Assuntos
Peptídeo Liberador de Gastrina/genética , Prurido/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios , Optogenética , Bloqueadores dos Canais de Potássio/farmacologia , Prurido/genética , Prurido/psicologia , Receptores da Bombesina/antagonistas & inibidores , Receptores da Bombesina/genética , Receptores de Glutamato/fisiologia , Receptores Pré-Sinápticos/metabolismo , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...